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We propose a simple model that aims at describing, in a stylized manner, how local breakdowns due to
imbalances or congestion propagate in real dynamical networks. The model converges to a self-organized
critical stationary state in which the network shapes itself as a consequence of avalanches of rewiring pro-
cesses. Depending on the model’s specification, we obtain either single-scale or scale-free networks. We
characterize in detail the relation between the statistical properties of the network and the nature of the critical
state, by computing the critical exponents. The model also displays a nontrivial, sudden collapse to a complete
network.
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Complex networks underlying many social and techno-
logical systems is a subject of booming recent interest[1,2].
On one hand, the structure of such networks has nontrivial
properties[1], which dramatically influences the nature of
processes taking place on them(see, e.g.,[3,4]). On the other
hand, the network’s structure constrains in a peculiar way the
growth [5] and evolution[6–10] of the network itself. This
calls for an extension of statistical physics, which tradition-
ally studies collections of dynamical variables interacting
through a fixed network, to systems where the network of
interactions itself becomes a dynamical variable.

Here we focus on dynamical networks where links do not
represent physical bonds, but rather relationships or commu-
nication channels. Reference[3] suggests that a structured
network of communications aimed at solving problems or
carrying out specific functions is a crucial feature of firms
and organizations in general. A router’s table in the Internet
is also an example of a node in a dynamic communication
network[11]. The network of financial institutions, linked by
mutual contracts and loans, provides a further example of a
dynamic network[12]. Beyond “static” design problems,
such as, e.g., minimizing congestion[3] or redistributing op-
timally the loads[13]; systems of this type also pose “dy-
namical” problems such as how and to what extent do con-
gestion or breakdown events propagate through the system.

Here we address these problems in a dynamic network
subject to two competing forces: on one side, there is a drive
toward increasing complexity, by, e.g., adding new links, be-
cause the system performs more efficiently its functions as it
becomes more densely interconnected. On the other, the re-
sulting increase in complexity may bring about conflicting
constraints, imbalances, or congestion problems, which may
cause a local breakdown of the network. A local breakdown
may engender a readaptation in its neighborhood, which may
inadvertently cause the breakdown to propagate further on
the network.

For example, a change in some router’s table in the Inter-
net, which is meant to improve efficiency, may inadvertently
cause congestion at some node downstream. This may trig-
ger several other changes in that local neighborhood, as rout-
ers try to avoid the congested nodes. But these changes may,
in their turn, cause further congestion elsewhere, and the
problem may expand even further, as an avalanche, to a

wider region. The stipulation of a contract between two in-
stitutions, which is, in principle, beneficial to both, may also
increase their operative constraints, making them less adapt-
able to a changing environment and hence more exposed to
the risk of bankruptcy. The failure of one institution likely
induces a rearrangement of the institutions linked with it and
perhaps engenders effects which propagate further across the
network[12]. Similar phenomena may take place in social or
trade networks.

Rather than trying to model, in a realistic manner, one of
the problems just discussed, we focus on a simple model of
network dynamics that captures the two main ingredients
discussed above: a slow dynamics where links are added to
the network and a fast relaxation dynamics of avalanche
events. The motivation for this choice is that the detailed
understanding of the behavior of a simple model with these
features may be the basis or at least a guide for addressing
more complex and realistic situations, such as those dis-
cussed above. Our main finding is that such systems can
self-organize close to a critical point where each modifica-
tion of the network’s architecture can have unforeseable con-
sequences which possibly affect a wide region of the system
[14]. This may have some bearing on the intermittence of
internet traffic[20] or on the nature of financial crises and
recessions. While several other models have been proposed
that exhibit phase transition[6,10] or critical behavior[7–9],
none exhibit the peculiar features of self-organized critical
systems[14].

We start from a empty network ofN nodes in which every
node i is assigned a fitnessf i drawn from a probability dis-
tribution rsfd. Let Fi be the set of neighbors ofi, and ki

= uFiu be the number of neighbors ofi. At every time step a
link is added between two previously unconnected random
nodes i and j ¹Fi. With probability f j nothing happens,
whereas with probability 1−f j the nodej becomes unstable
or congested and it “topples.” As a result all its links(includ-
ing that with i) are rewired to randomly chosen nodes, i.e.,
for anyhPFj, a nodel ¹Fh is chosen at random and the link
jh is rewired tohl. In its turn, with probability 1−f l, also
nodel may become unstable and topple. Hence, toppling of
node j may start an avalanche of toppling events which
propagates through the network rearranging it. More pre-
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cisely, unstable nodes are selected for toppling sequentially
in a random order, until no unstable node remains. Unstable
nodes, after they topple, remain unconnected from the net-
work [15] and are assigned a new fitness value drawn from
the distributionrsfd. Hence, toppling is equivalent to replac-
ing the unstable node with a new one.

In order to stabilize the network and reach a stationary
state, we introduce the dissipation of links: at each toppling
event, with probabilityl, all the links of the unstable node
are removed from the network. Note that without dissipation
the number of links would increase in time until the com-
plete graph is reached. The complete graphs j PFi ∀ i , j , i
Þ jd is an absorbing state of the dynamics, because no link
can be added to it.

The distributionrsfd is the only parameter of the model.
An alternative class of models can be defined by specifying
the probabilityuk that a node withk neighbors becomes un-
stable upon addition of a further link. A relation between the
two models is possible along the lines of Ref.[16], in the
limit l→0 (no dissipation). Then the probability to find a
node with k neighbors and f i P ff , f +dfd is rsf ukddf
~ fkrsfddf, where fk is the probability that a node withf i

= f hask neighbors. Then a model with

uk =E
0

1

dfs1 − fdrsf ukd =

E
0

1

dfs1 − fdfkrsfd

E
0

1

df fkrsfd
s1d

is completely equivalent to one specified in terms ofrsfd, in
the limit l→0. The dependence onk of uk reflects the fact
that ki and f i are positively correlated because nodes with
higher fitness have a smaller chance of becoming unstable.
For convenience we shall refer mostly to models specified in
terms ofuk, using Eq.(1) to translate the results in the origi-
nal model.

Our results can be summarized as follows:(i) when uk
decays faster than 1/k there is a criticallc such that the
network evolves toward a complete graph forl,lc. The
same happens foruk.b/ksk@1d andb,3/2, whereas when
b.3/2 or whenuk decays slower than 1/k, the collapse
takes place only in finite networks. Indeed we find complete
graphs only forl,lc,N−g, where g=s2b−3d / sb−1d for
3/2,b,2 andg=1 otherwise.(ii ) the noncollapsed phase
l.lc is characterized by an uncorrelated random network
[17] with finite average degree and a degree distributionpk
that depends onrsfd (or uk) (see Fig. 1). In particular, ifuk

decays slower than 1/k thenpk decays faster than any power,
whereas ifuk.b/k then pk,k−b. (iii ) The dynamics con-
verges to a stationary sequence of avalanches of rewiring
processes with a power law distributionPssd,s−t of sizes
(see Fig. 3). As in Ref.[16], we shall define the sizes of an
avalanche as the number of toppling events that it causes.
The exponentt takes the mean-field value[18] t=3/2 when
uk decays slower than 2/k, whereast=1+1/b if uk.b/k
with 3/2,b,2.

The collapse to a complete graph, where congestion is
minimal, is reasonable, given that the network is trying to

adapt by avoiding congestion. The nontrivial issue on which
we shall concentrate mostly, is related to the self-organized
critical state. In view of the special role played by the case
uk,1/k, we focus on the following simple forms ofrsfd and
to the correspondinguk:

rsfd = bs1 − fdb−1, uk =
b

b + k + 1
. s2d

In order to shed light on the model’s behavior, let us derive
an equation for the avalanche distribution. Definesk as the
avalanche size originating from an unstable node withk
neighbors. This is a random variable that can be decomposed
as follows:

sk = 1 +do
j=1

k+1

vkj
skj

s3d

into the contribution of the unstable node and those of the
avalanchesskj

ensuing from its neighbors, withkj being the
number of neighbors of thej th neighbor. Note that the sum
runs overk+1 links as it includes the link which caused the
instability and the k preexisting neighbors. In Eq.(3)
d=0,1 describes the effect of dissipation withPsd=0d=l
=1−Psd=1d, whereasvkj

takes valuevkj
=0 if the rewiring of

the link to the j th neighbor causes no further toppling, and
vkj

=1 otherwise. Hence,Psvl =1d=1−Psvl =0d=ul.
Now we can write the generating functionfkszd=kzskl of

the probabilityPssukd to have an avalanche of sizes given
that the initiator node hask neighbors. From this, it is easy to
find the generating function of the distributionPssd of ava-
lanche sizesxszd;os Pssdzs=1/ūok=0

` pkukfkszd with ū
=ok pkuk. After some algebra, using the fact that the rewired
nodes are chosen randomly in the network, Eq.(3) leads us
to

FIG. 1. Degree distributionpk for the network ofN=104 nodes
(averaged over 300N time steps after equilibration) for the model of
Eq. (2) andb=1.8, . . . ,3.4 andl=5310−3 and foruk=u−0.5 (in-
set). The solid lines correspond to the theoretically expectedpk in
the limit l→0 [Eq. (8) and pk=us1−udk, respectively]. The peak
for b=1.8 andk@1 is a precursor of the phase transition to the
complete graph discussed in the text.
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xszd = zFl +
1 − l

ū
ok=0

`
pkukf1 − ū + ūxszdgk+1G , s4d

which is a nonlinear self-consistent equation forxszd. Note
that xs1d=1 as it should and that

x8s1d = ksl =
1

1 − s1 − ldksk + 1dul
. s5d

Apart from the parametersl anduk, Eq. (2) depends also on
the stationary-state degree distributionpk. Hence, before dis-
cussing Eq.(3) further, we need to elaborate on the nature of
the stationary state. A necessary condition in order to be at
the stationary state is that the total number of linksKstd
present in the network is constant on average.Kstd increases
by one for the random addition of a new link and is reduced
by the total number of linksL dissipated during the ava-
lanche that follows. Here

L = vo
i=1

s

diski + 1d, s6d

wherev=1 if the chosen site is unstable andv=0 otherwise,
and di =1 if dissipation occurs at the toppling sitei, other-
wisedi =0. Consequently,v anddi have average valuesū and
l and thuskLl=lksk+1duklksl. Then, stationaritykLl=1 and
Eq. (5) imply that ksk+1dukl=1. As a by-product, we find
ksl=1/l, in perfect agreement with numerical simulations.

The stationary degree distributionpk can be found by
quantifying the Markov chain of possible transitionski →ki8
during the dynamics. In the limitl→0 andN→`, where we
can neglect dissipation and finite-size effects, there are only
two processes that take place on each node:ki →ki +1, with
probability 1−uki

andki →0 with probabilityuki
. Then, in the

stationary state,pk satisfies

pk+1 = s1 − ukdpk. s7d

Taking the sum of Eq.(7) on k we find p0=kūkl, which
means that the fraction of sites with no neighbor is equal to
the probability that a node becomes unstable. Furthermore,
multiplying Eq. (7) by k+1 and taking the sum overk, we
recover the stationary conditionksk+1dukl=1. In the sim-
plest caseuk=u for all k, we findpk=us1−udk, whereas with
Eq. (2) we find

pk = sb − 1d
GsbdGsk + 1d
Gsb + k + 1d

, k−b, s8d

where the asymptotic power-law behavior holds fork@1.
Notice that kkl=1/sb−2d diverges whenb→2+ and that
there is a finite fractionū=1−1/b of unconnected nodes.
Still, the network has a giant connected component forb,7
[17]. Equation(7) yields apk which decays faster than any
power if uk decays less slowly than 1/k, or if it increases.
Conversely, ifuk decays faster than 1/k, we find thatpk is not
normalizable forN→`. Numerical simulations(see Fig. 1)
fully support this picture, even though the effects of dissipa-
tion and finite size are clearly evident fork@1.

The neglect of dissipation, whenN is finite, is a reason-
able approximation if nodes with maximal degreeki =N−1

are not stable. A node connected to all neighbors, cannot
receive further links and hence cannot become unstable. Its
degree decreases only if dissipation occurs at a node con-
nected to them. The rate of this process, for a node with
degreek, is lk/ kkl. Hence, iflN/ kkl@1, nodes withk,N
decay very fast and the only effect of dissipation is to intro-
duce a cutoffkc,1/l in the distributionpk. When lN/ kkl
,1 we expect a transition(close) to the complete graphki
=N−1 for all i. When kkl is finite, i.e., forb.2 or for uk,
which decays slower than 1/k, the collapse to a complete
graph takes place forl,lc,N−1. When 3/2,bø2 the av-
erage degreekkl,Ns2−bd/sb−1d diverges with the system size.
Then the decay rate of totally connected nodes is,lNg, with
g=s2b−3d / sb−1d and the collapse to a complete graph takes
place for l,lc,N−g. In both cases(i.e., for b.3/2) for
any l,1, it is always possible to takeN large enough to
make the decay ratelNg large enough so that finite-size
effects can be neglected. But whenb,3/2 this is no longer
true becausekkl,N and the decay rate of completely con-
nected nodes remains finitesg=0d even whenN→`. Be-
yond a finite dissipation ratelc, the network collapses to the
complete graph.

Figure 2 fully confirms the theoretical insight discussed
above. Whenl.lc, wherelc,N−g (see inset), the dynam-
ics reaches a network with finite average degree, whereas for
l,lc a collapse to the complete graph is observed, with a
transition that is sudden and discontinuous. In the case in
which the uk=u we also observe a transition from a finite
average connectivity to a average connectivity of orderN.
The transition occurs for values oflc,N−1, but the transi-
tion is rather smooth.

Having discussed the stationary state, let us go back to the
Eq. (3) for the avalanche-size distribution. We focus on the
region 1@l@N−g, where the network is not densely con-
nected and dissipation effects are weak. Anticipating that the
avalanche-size distribution acquires a cutoffsc,l−s, for
some exponents.0, we postulate the scaling formPssd
.s−tFsslsd with finite Fs0d and Fsxd→0 faster than any
power asx→`. Such a scaling hypothesis is fully corrobo-

FIG. 2. Average degree as a function ofl for different system
sizes andb=1.8. The value oflc at which the transition takes place
is plotted in the inset againstN. The full line is the theoretical
predictionlc~N−g with g=0.75 forb=1.8.
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rated by numerical results, as shown in Fig. 3. This corre-
sponds[19] to an analogous scaling form

xszd . 1 − s1 − zdt−1hS1 − z

ls D s9d

for the generating function forl!1 and 1−z,ls. Setting
for convenience 1−z=xls, asymptotic analysis forl!1
shows that the leading orders of Eq.(4) are

l1+sst−1dxt−1hsxd = lsx − clsbst−1dxbst−1dhbsxd, s10d

where b=2, andc=sb−1d / fbsb−2dg for b.2 while b=b,
c=fpbb−1s1−bdbg / hsinfps2−bdgj for b,2. Note that c

,1/ub−2u diverges whenb→2 is approached from both
sides. Dividing Eq.(10) by ls and taking the scaling limit
l→0 with x finite, we find a nontrivial result with all three
terms finite if we choose

t = 3/2, s = 2 for b . 2 s11d

t = 1 + 1/b, s = b/sb − 1d for b , 2. s12d

and the scaling function is the inverse ofxshd=hb / f1
−chbgb. In particular,hsxd→c1/b for x→` and hsxd,x1/b

for x!1. Forb.2 the solution coincides with that of other
mean-field models[19] hsxd=fÎc/x+4−Îc/xg / s2cd and per-
fectly matches numerical simulations for a range of values of
l (see the inset of Fig. 3). It is easy to check that the model
with uk decaying slower than 1/k falls in the b=2, t=3/2,
s=2 universality class.

In conclusion, we have shown how a slow growth dynam-
ics and a fast relaxation through avalanche events can gen-
erate a dynamical network with given degree distribution.
The stationary state is critical in the sense that avalanches of
all sizes occur, and it is reached spontaneously without fine
tuning of external parameters as long as the dissipation rate
is larger than a given thresholdlc,N−g. For smaller dissi-
pation rates, the network collapses to the complete graph.
While the detailed solution depends on the particular sim-
plicity of the model chosen, the generic picture may apply to
a wider class of systems and capture some features of the
nonlinear and intermittent behavior of real systems.
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FIG. 3. Data collapse of the avalanche distributionPssd with
s.7 for networks ofN=103 nodes averaged over 200N time steps
after equilibration. Here b=2.5 and l
=0.01,0.02,0.04,0.06,0.18,0.31. The data collapse was done tak-
ing the theoretical valuest=3/2 ands=2 of the exponents. Inset:
the scaling functionhsxd for the same data set.
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