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Clogging and self-organized criticality in complex networks
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We propose a simple model that aims at describing, in a stylized manner, how local breakdowns due to
imbalances or congestion propagate in real dynamical networks. The model converges to a self-organized
critical stationary state in which the network shapes itself as a consequence of avalanches of rewiring pro-
cesses. Depending on the model’s specification, we obtain either single-scale or scale-free networks. We
characterize in detail the relation between the statistical properties of the network and the nature of the critical
state, by computing the critical exponents. The model also displays a nontrivial, sudden collapse to a complete
network.
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Complex networks underlying many social and techno-wider region. The stipulation of a contract between two in-
logical systems is a subject of booming recent intefes]. stitutions, which is, in principle, beneficial to both, may also
On one hand, the structure of such networks has nontrividhcrease their operative constraints, making them less adapt-
properties[1], which dramatically influences the nature of able to a changing environment and hence more exposed to
processes taking place on thésee, e.g.[3,4]). On the other  the risk of bankruptcy. The failure of one institution likely
hand, the network’s structure constrains in a peculiar way thehduces a rearrangement of the institutions linked with it and
growth [5] and evolution[6—10 of the network itself. This  perhaps engenders effects which propagate further across the

calls for an extension of statistical physics, which traditio”'net\/vork[lz]. Similar phenomena may take place in social or
ally studies collections of dynamical variables interactinGs;oqe networks

through a fixed network, to systems where the network of - poiher than trying to model, in a realistic manner, one of

interactions itself becomes a dynamical variable. . . :
Here we focus on dynamical networks where links do not;heemr;(;?l? Izmnsajr?] isgsdlti(:fcsieeldiuvrveesf?ﬁgst\?vg amimpilﬁ r:;%?:‘rl]tgf
represent physical bonds, but rather relationships or commus. y P 9

nication channels. Referend8] suggests that a structured discussed above: a slow dynamics where links are added to

network of communications aimed at solving problems orthe network and a fast relaxation dynamics of avalanche

carrying out specific functions is a crucial feature of firms Events. The motivation for this choice is that the detailed

and organizations in general. A router’s table in the Internetinderstanding of the behavior of a simple model with these
is also an example of a node in a dynamic communication€atures may be the basis or at least a guide for addressing
network[11]. The network of financial institutions, linked by More complex and realistic situations, such as those dis-
mutual contracts and loans, provides a further example of gussed above. Our main finding is that such systems can
dynamic network[12]. Beyond “static” design problems, self-organize close to a critical point where each modifica-
such as, e.g., minimizing congestif#i or redistributing op-  tion of the network’s architecture can have unforeseable con-
timally the loads[13]; systems of this type also pose “dy- sequences which possibly affect a wide region of the system
namical” problems such as how and to what extent do conf14]. This may have some bearing on the intermittence of
gestion or breakdown events propagate through the systeninternet traffic[20] or on the nature of financial crises and
Here we address these problems in a dynamic networkecessions. While several other models have been proposed
subject to two competing forces: on one side, there is a drivéhat exhibit phase transitici$,10] or critical behaviof7-9],
toward increasing complexity, by, e.g., adding new links, benone exhibit the peculiar features of self-organized critical
cause the system performs more efficiently its functions as isystemg14].
becomes more densely interconnected. On the other, the re- We start from a empty network & nodes in which every
sulting increase in complexity may bring about conflicting nodei is assigned a fitnesls drawn from a probability dis-
constraints, imbalances, or congestion problems, which maiyibution p(f). Let F; be the set of neighbors af and k;
cause a local breakdown of the network. A local breakdowrr |F;j| be the number of neighbors afAt every time step a
may engender a readaptation in its neighborhood, which malink is added between two previously unconnected random
inadvertently cause the breakdown to propagate further onodesi and j ¢ F;. With probability f; nothing happens,
the network. whereas with probability 1f; the nodej becomes unstable
For example, a change in some router’s table in the Interoer congested and it “topples.” As a result all its linfksclud-
net, which is meant to improve efficiency, may inadvertentlying that withi) are rewired to randomly chosen nodes, i.e.,
cause congestion at some node downstream. This may triger anyh e F;, a nodd « F;, is chosen at random and the link
ger several other changes in that local neighborhood, as roufh is rewired tohl. In its turn, with probability 1, also
ers try to avoid the congested nodes. But these changes maygdel may become unstable and topple. Hence, toppling of
in their turn, cause further congestion elsewhere, and theode j may start an avalanche of toppling events which
problem may expand even further, as an avalanche, to propagates through the network rearranging it. More pre-
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cisely, unstable nodes are selected for toppling sequentially 10’

in a random order, until no unstable node remains. Unstable > b=18
nodes, after they topple, remain unconnected from the net- S
work [15] and are assigned a new fitness value drawn from

the distributionp(f). Hence, toppling is equivalent to replac- 10
ing the unstable node with a new one. =
In order to stabilize the network and reach a stationary &

state, we introduce the dissipation of links: at each toppling 10° |~
event, with probabilityx, all the links of the unstable node
are removed from the network. Note that without dissipation
the number of links would increase in time until the com-
plete graph is reached. The complete grdpk F;0i,j,i 10°¢ I
#]) is an absorbing state of the dynamics, because no link ! 1o Kk 100 1000
can be added to it.

The distributionp(f) is the only parameter of the model. FIG. 1. Degree distributiop, for the network ofN=10* nodes
An alternative class of models can be defined by specifyingaveraged over 300time steps after equilibratigrior the model of
the probabilityu, that a node withk neighbors becomes un- Eg.(2) andb=1.8, ...,3.4 and.=5x 10"% and foru,=u-0.5 (in-
stable upon addition of a further link. A relation between thesed. The solid lines correspond to the theoretically expeggth
two models is possible along the lines of REE6], in the  the limit A—0 [Eq. (8) and p,=u(1-u)", respectively. The peak
limit A—0 (no dissipation Then the probability to find a for b=1.8 andk%l is a precursor of the phase transition to the
node with k neighbors andf; e[f,f+df) is p(flkdf  complete graph discussed in the text.
= fkp(f)df, where ¥ is the probability that a node witf
=f hask neighbors. Then a model with adapt by avoiding congestion. The nontrivial issue on which
we shall concentrate mostly, is related to the self-organized
critical state. In view of the special role played by the case

0 10k20 30

1
df(1—f)f<p(f)

1 0 u,~ 1/k, we focus on the following simple forms pff) and
uk=f df(1-f)p(flk) = I (1)  to the corresponding,:
0 f df  fo(f) .
0
f)=b(1-H)>1, uc= : 2
p(f)=bL-H, Y= v

is completely equivalent to one specified in termsdf, in
the limit A — 0. The dependence dnof u, reflects the fact . , . .
that k; and f; are positively correlated because nodes with!n order to shed light on the modglg behawor, I.Et us derive
higher fitness have a smaller chance of becoming unstabl@" €guation for the avalanche distribution. Deffeas the

For convenience we shall refer mostly to models specified iﬁV?'ﬁEChe s;]z_e _onglna(tjlng from b?n #nstabli ngde viith g
terms ofuy, using Eq/(1) to translate the results in the origi- N€ighbors. This is a random variable that can be decompose
nal model. as follows:

Our results can be summarized as followis: when uy
decays faster than k/there is a critical\; such that the
network evolves toward a complete graph for\.. The Sc= 1+d2 ViSig 3)
same happens fag,=b/k(k>1) andb<3/2, whereas when =

> . _
?ak(;)’s/ i&evg:ﬁ; :Jr%‘ f?n?tcea)r/]sét\?vlgrl\gr Itnh; ene; Cvt?in%ogﬁfnss etem'[o the contribution of the unstable node and those of the

graphs only for\ <\.~N", where y=(2b-3)/(b-1) for avalancheskj gnsuing from its ngighbors, witky being the
3/2<b<2 andy=1 otherwise(ii) the noncollapsed phase number of neighbors of thgh neighbor. Note that the sum

N>\, is characterized by an uncorrelated random network4ns o_v_erk+1 links as it mclgd_es the !mk which caused the
[17] with finite average degree and a degree distribuppn m_stablllty an_d the k preexisting n_e|ghbors._ In_Eq£3)
that depends op(f) (or uy) (see Fig. 1 In particular, ifu, d=0,1 describes the effect of d|SS|pat|o_n WIFP(dT.O)—)\
decays slower than kthenp, decays faster than any power, -+ ~P(d=1), whereaw, takes value =0 if the rewiring of
whereas ifu,=b/k then p,~k™. (i) The dynamics con- the link to th_ejth neighbor causes no further toppling, and
verges to a stationary sequence of avalanches of rewiringq=1 otherwise. He”Cd?(UI:1):?_P(UI:Q):UI-

processes with a power law distributid?(s) ~s™ of sizes Now we can write the generating functief(z) =(z*) of
(see Fig. 3. As in Ref.[16], we shall define the sizeof an  the probabilityP(s|k) to have an avalanche of sizegiven
avalanche as the number of toppling events that it causef)at the initiator node hasneighbors. From this, it is easy to
The exponent takes the mean-field valyés] r=3/2when  find the generating function of the distributid?(s) of ava-

u, decays slower than R/ whereasr=1+1/b if u,=b/k lanche sizesx(z)=2 P(5)z°=1/uZ|_, px¢(2) with u
with 3/2<b<2. =2y pUy. After some algebra, using the fact that the rewired
The collapse to a complete graph, where congestion isodes are chosen randomly in the network, &).leads us

minimal, is reasonable, given that the network is trying toto

k+1
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[ o 1.0 ST
X2 =z N+ m Ek:o pull-u+ux@2]t|, (@) Iy —— N=100
08 | \\\1 T ke
which is a nonlinear self-consistent equation fgr). Note i N,
that x(1)=1 as it should and that S 06 ||
| |
1 £ 1 '
"D=(s= . 5 * !
= e ) © foul T |
<107 L S0
Apart from the parameteis andu,, Eq. (2) depends also on |
the stationary-state degree distributign Hence, before dis- 02
cussing Eq(3) further, we need to elaborate on the nature of 0y
the stationary state. A necessary condition in order to be at 0.0
the stationary state is that the total number of link&) 0.0
present in the network is constant on averdgg) increases
gy one for the random addltlon qf anew link "?md is reduced FIG. 2. Average degree as a function)ofor different system
y the total number of links\ dissipated during the ava- _. _ . L
lanche that follows. Here sizes and=1.8. The value ok at which the transition takes place

is plotted in the inset againdt. The full line is the theoretical
s prediction\;.« N~ with y=0.75 forb=1.8.
A=v2 di(ki +1), (6) .
i=1 are not stable. A node connected to all neighbors, cannot
receive further links and hence cannot become unstable. Its
o ) - degree decreases only if dissipation occurs at a node con-
andd,=1 if dissipation occurs at the toppling siteother- o o4 1o them. The rate of this process, for a node with
wised;=0. Consequently, andg, have average valuesand degreek, is Ak/(k). Hence, ifAN/{k)>1, nodes withk~N
A and th_us(A)-)x((k+ 1ui(s). Then, stationarityA)=1 aqd decay very fast and the only effect of dissipation is to intro-
Eq. (5) imply that{(k+1)ug=1. As a by-product, we find q,00"5 cytoffk.~ 1/ in the distributionp,. When AN/(k)
(s)=1/\, in perfect agreement with numerical simulations.

! o ~1 we expect a transitiofclose to the complete grapk;
Th(_a stationary degree Q|strlbut|qn1_< can be_found py =N-1 for all i. When(k) is finite, i.e., forb>2 or for u,,
quanufymg the M_arkov chal_n of possible transitioks-k which decays slower than k&/the collapse to a complete

during the dynamics. In the limk— 0 andN— o0, where we raph takes place for<\.~ N1 When 3/2<b=2 the av-
can neglect dissipation and finite-size effects, there are onl rage degreek>~N(z-b)/(b91) divérges with the system size.
w;/gbggﬁfsﬁz tg%t dtf k_e> Opiziiﬁ OS)EZSE tngde+ﬁ;r1l,i:1thr:]e Then the decay rate of totally connected nodesidN?, with
Etationar ystat K satilsfies P YU ’ v=(2b-3)/(b-1) and the collapse to a complete graph takes
y Pk place forA<A;~N7". In both casegi.e., for b>23/2) for
Pri1 = (1 = up) Py (7) any A\ <1, it is always possible to takd large enough to

. i _ . make the decay rataN? large enough so that finite-size
Taking the sum of Eq(7) on k we find py=(uy, which effects can be neglected. But whier<3/2 this is no longer

means that the fraction of sites with no neighbor is equal tq, ;s becausék)~N and the decay rate of completely con-
the probability that a node becomes unstable. Furthermorcf\.rected nodes remains finite=0) even whenN— . Be-

multiplying Eq. (7) by k+1 and taking the sum ovés, we T
recover the stationary conditiof(k+1)u)=1. In the sim- )Clgnmdplaetf(lang(raac:;?|patlon rate,, the network collapses to the
plest casey=u for all k, we findp,=u(1-w), whereas with Figure 2 fully confirms the theoretical insight discussed
Eq. (2) we find above. When >\, wherex,~N7 (see inset the dynam-
rork+1 ics reaches a network with finite average degree, whereas for
F(b+—k+l) ~ K, (8) N <A a collapse to the complete graph is observed, with a
transition that is sudden and discontinuous. In the case in

where the asymptotic power-law behavior holds k3#1.  which theu,=u we also observe a transition from a finite
Notice that(k)=1/(b-2) diverges whenb—2* and that average connectivity to a average connectivity of ordler
there is a finite fractioru=1-1/b of unconnected nodes. The transition occurs for values af~N, but the transi-
Still, the network has a giant connected componenbfar7  tion is rather smooth.
[17]. Equation(7) yields ap, which decays faster than any =~ Having discussed the stationary state, let us go back to the
power if u, decays less slowly than &/or if it increases. EQ. (3) for the avalanche-size distribution. We focus on the
Conversely, ifu, decays faster than k/we find thatp, is not ~ region >X>N"”, where the network is not densely con-
normalizable forN— <. Numerical simulationgsee Fig. 1 nected and dissipation effects are weak. Anticipating that the
fully support this picture, even though the effects of dissipa-avalanche-size distribution acquires a cutsff~\"7, for
tion and finite size are clearly evident fae> 1. some exponentr>0, we postulate the scaling form(s)

The neglect of dissipation, wheM is finite, is a reason- =s"®(s\?) with finite ®(0) and ®(x) —0 faster than any
able approximation if nodes with maximal degrieeN-1  power asx—o. Such a scaling hypothesis is fully corrobo-

wherev =1 if the chosen site is unstable and0 otherwise,

pc=(b-1)
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10° ‘ ‘ - ' ~1/|b-2| diverges whenb— 2 is approached from both
T i ol sides. Dividing Eq.(10) by A\? and taking the scaling limit
e “?ﬁiig?%ggs A — 0 with x finite, we find a nontrivial result with all three
10" L 0 M ] terms finite if we choose
T T ool
= ‘ 7=3/2, 0=2 forb>2 (11
& Z10? / "
100 < ; 7=1+1b, o=b/(b-1) forb<2. (12
-3 . L H . . . .
0 07107 10° 10° A and the scaling function is the inverse afh)=h?/[1
. x —ch?]2. In particular, h(x) — c'# for x— oo and h(x) ~x#
0 7 107 100 100 10 10 for x<1. Forb>2 the solution coincides with that of other
N mean-field model§19] h(x)=[\c/x+4-vc/x]/(2c) and per-

fectly matches numerical simulations for a range of values of

FIG. 3. Data collapse of the avalanche distributifs) with ) (see the inset of Fig.)3lt is easy to check that the model
s>7 for networks ofN=10° nodes averaged over 20@ime steps with u, decaying slower than k/falls in the 8=2, 7=3/2
after equilibration. Here  b=2.5 and A > ukniversality class ' '

=0.01,0.02,0.04,0.06,0.18,0.31. The data collapse was done tak- In conclusion, we have shown how a slow growth dynam-

ing the theoretical values=3/2 ando=2 of the exponents. Inset: . .
) . ics and a fast relaxation through avalanche events can gen-
the scaling functiorh(x) for the same data set. . . . L
erate a dynamical network with given degree distribution.
) o ] The stationary state is critical in the sense that avalanches of
rated by numerical results, as shown in Fig. 3. This correy| sizes occur, and it is reached spontaneously without fine

sponds{19] to an analogous scaling form tuning of external parameters as long as the dissipation rate
1-7 is larger than a given threshold ~N~?. For smaller dissi-
x(2) = 1—(1—2)7h1h( G > (9) pation rates, the network collapses to the complete graph.

While the detailed solution depends on the particular sim-
for the generating function fok<1 and 1z~\°. Setting pI|C|Fy of the model chosen, the generic picture may apply to
for convenience 1z=x\?, asymptotic analysis fon<1 & wider class of systems and capture some features of the
shows that the leading orders of Hd) are nonlinear and intermittent behavior of real systems.

AL Dy In(x) = \ox — N“AT VBT DRB(x) (10 We acknowledge F. Vega-Redondo for useful comments
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